Search results for "fluorescent pseudomonas"

showing 5 items of 5 documents

Diversity and Evolution of the Phenazine Biosynthesis Pathway

2010

ABSTRACT Phenazines are versatile secondary metabolites of bacterial origin that function in biological control of plant pathogens and contribute to the ecological fitness and pathogenicity of the producing strains. In this study, we employed a collection of 94 strains having various geographic, environmental, and clinical origins to study the distribution and evolution of phenazine genes in members of the genera Pseudomonas , Burkholderia , Pectobacterium , Brevibacterium , and Streptomyces . Our results confirmed the diversity of phenazine producers and revealed that most of them appear to be soil-dwelling and/or plant-associated species. Genome analyses and comparisons of phylogenies inf…

Antifungal Agentsgenome sequenceaeruginosa pao1virulence factorsphenazine-1-carboxylic acidVIRULENCE FACTORS GENE-CLUSTERApplied Microbiology and Biotechnologychemistry.chemical_compoundGene clusterEnvironmental MicrobiologyPhylogenySoil Microbiologyfluorescent pseudomonas2. Zero hungerGenetics0303 health sciencesEcologybiologyEPS-2PseudomonasPlants[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyMultigene FamilyHorizontal gene transferBiotechnologyDNA BacterialWashingtonPectobacteriumGene Transfer HorizontalGenotypeSequence analysisMolecular Sequence DataPhenazineerwinia-herbicola eh1087pseudomonas-chlororaphis pcl1391Evolution Molecular03 medical and health sciencesBacterial ProteinsPseudomonasBotanyEscherichia coli030304 developmental biologyBacteriaBase SequencePSEUDOMONAS-CHLORORAPHIS030306 microbiologybiological-controlGene Expression Regulation BacterialSequence Analysis DNA15. Life on landbiology.organism_classificationrpoBERWINIA-HERBICOLAPHENAZINEBiosynthetic Pathwaysgene-clusterLaboratorium voor PhytopathologieBurkholderiachemistryGenes BacterialLaboratory of PhytopathologyPhenazinesburkholderia-cepacia complexSequence AlignmentFood Science
researchProduct

Influence of pea genotype on root associated fluorescent pseudomonads, impact on plant iron nutrition

2019

International audience; Pea has a high potential in agroecology because of its ability to fix atmospheric nitrogen and for Humannutrition due to the high amino-acids content of its seeds. However, pea can suffer from a susceptibility toiron deficiency in calcareous soils as expressed by chlorosis symptoms. Previous studies have shown thatsiderophores of model strains of fluorescent pseudomonads (fp), pyoverdines, promote iron nutrition ofarabidopsis and tobacco. We hypothesized that susceptibility to iron deficiency of pea is at least partly dueto its ability to select fluorescent pseudomonad that promote differentially plant nutrition thanks to theirsiderophores.To identify siderophores po…

[SDV] Life Sciences [q-bio][SDE] Environmental SciencesFluorescent Pseudomonas spp.Plant iron nutritionpyoverdine[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyfood and beveragesinteraction[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyFluorescent Pseudomonas sppPisum sativum
researchProduct

Influence of field crop plantations on microbial characteristics of runoff water: effect on plant growth and soil functioning

2006

International audience

ACTINOMYCETES[SDV] Life Sciences [q-bio][SDE] Environmental SciencesMYCORRHYZAS[SDV]Life Sciences [q-bio][SDE]Environmental SciencesFLUORESCENT PSEUDOMONASRUNOFFRAIN SIMULATIONComputingMilieux_MISCELLANEOUS
researchProduct

Reciprocal interactions between plants and fluorescent pseudomonads in relation with iron in the rhizosphere

2008

communication orale invitée; absent

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesstomatognathic diseasesironpyoverdine nutritionplant[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesfluorescent pseudomonas
researchProduct

Reciprocal interactions between plants and fluorescent pseudomonads in relation with iron in the rhizosphere

2007

International audience; Iron is an essential element for plants and microbes. However, in most cultivated soils, the concentration of iron available for these living organisms is very low since its solubility is controlled by stable hydroxides, oxyhydroxides and oxides. The high demand for iron by plants and microorganisms in the rhizosphere together with its low availability in soils leads to a strong competition for this nutrient among living organisms. To face this competition, plants and microorganisms have developed active strategies of iron uptake. In non graminaceous plants (strategy I), iron uptake relies on acidification and reduction of Fe+++ in Fe++ which incorporated in the root…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesironnutritionpyoverdine[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyplant[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyfluorescent pseudomonas
researchProduct