Search results for "fluorescent pseudomonas"
showing 5 items of 5 documents
Diversity and Evolution of the Phenazine Biosynthesis Pathway
2010
ABSTRACT Phenazines are versatile secondary metabolites of bacterial origin that function in biological control of plant pathogens and contribute to the ecological fitness and pathogenicity of the producing strains. In this study, we employed a collection of 94 strains having various geographic, environmental, and clinical origins to study the distribution and evolution of phenazine genes in members of the genera Pseudomonas , Burkholderia , Pectobacterium , Brevibacterium , and Streptomyces . Our results confirmed the diversity of phenazine producers and revealed that most of them appear to be soil-dwelling and/or plant-associated species. Genome analyses and comparisons of phylogenies inf…
Influence of pea genotype on root associated fluorescent pseudomonads, impact on plant iron nutrition
2019
International audience; Pea has a high potential in agroecology because of its ability to fix atmospheric nitrogen and for Humannutrition due to the high amino-acids content of its seeds. However, pea can suffer from a susceptibility toiron deficiency in calcareous soils as expressed by chlorosis symptoms. Previous studies have shown thatsiderophores of model strains of fluorescent pseudomonads (fp), pyoverdines, promote iron nutrition ofarabidopsis and tobacco. We hypothesized that susceptibility to iron deficiency of pea is at least partly dueto its ability to select fluorescent pseudomonad that promote differentially plant nutrition thanks to theirsiderophores.To identify siderophores po…
Influence of field crop plantations on microbial characteristics of runoff water: effect on plant growth and soil functioning
2006
International audience
Reciprocal interactions between plants and fluorescent pseudomonads in relation with iron in the rhizosphere
2008
communication orale invitée; absent
Reciprocal interactions between plants and fluorescent pseudomonads in relation with iron in the rhizosphere
2007
International audience; Iron is an essential element for plants and microbes. However, in most cultivated soils, the concentration of iron available for these living organisms is very low since its solubility is controlled by stable hydroxides, oxyhydroxides and oxides. The high demand for iron by plants and microorganisms in the rhizosphere together with its low availability in soils leads to a strong competition for this nutrient among living organisms. To face this competition, plants and microorganisms have developed active strategies of iron uptake. In non graminaceous plants (strategy I), iron uptake relies on acidification and reduction of Fe+++ in Fe++ which incorporated in the root…